首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   45933篇
  免费   1863篇
  国内免费   1763篇
  2023年   406篇
  2022年   536篇
  2021年   662篇
  2020年   844篇
  2019年   1019篇
  2018年   1052篇
  2017年   905篇
  2016年   920篇
  2015年   1001篇
  2014年   2209篇
  2013年   3590篇
  2012年   1409篇
  2011年   2140篇
  2010年   1516篇
  2009年   2093篇
  2008年   2230篇
  2007年   2248篇
  2006年   1930篇
  2005年   1807篇
  2004年   1505篇
  2003年   1471篇
  2002年   1227篇
  2001年   968篇
  2000年   862篇
  1999年   778篇
  1998年   819篇
  1997年   743篇
  1996年   742篇
  1995年   769篇
  1994年   778篇
  1993年   707篇
  1992年   639篇
  1991年   555篇
  1990年   528篇
  1989年   532篇
  1988年   454篇
  1987年   461篇
  1986年   318篇
  1985年   694篇
  1984年   983篇
  1983年   675篇
  1982年   757篇
  1981年   604篇
  1980年   524篇
  1979年   462篇
  1978年   296篇
  1977年   298篇
  1976年   240篇
  1974年   194篇
  1973年   188篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
71.
The kinetics of the electrostatically induced phase transition of dimyristoyl phosphatidic acid bilayers was followed using the stopped-flow technique. The phase transition was triggered by a fast change in the pH or the magnesium ion concentration and followed by recording the time dependence of the absorbance. When the phase transition was induced by a pH jump the time course of the absorbance could be described by two exponentials, their time constants displaying the for cooperative processes characteristic maximum at the transition midpoint. The time constants are in the 10 and 100 ms range for the H+ triggered transition from the fluid to the ordered state. A third slower process shows no appreciable temperature dependence and is probably caused by vesicle aggregation. For the OH--induced transition fron the ordered to the fluid state the time constants are in the 100 and 1000 ms range. The fluid-ordered transition could also be triggered by addition of magnesium ions. Of the several observed processes only the fastest in the 10–100 ms time range could definitely be assigned to the fluid-ordered transition while the others are due to aggregation phenomena. The experimental data were compared with results obtained from pressure jump experiments and could be interpreted on the basis of theories for non-equilibrium relaxation.  相似文献   
72.
Indol-3yl-acetic acid was identified in extracts of sterile roots of Zeamays seedlings by means of TLC, chromogenic reactions, GLC and GC-MS.  相似文献   
73.
Adkins, S. W., Symons, S. J. and Simpson, G. M. 1988. The physiological basis of seed dormancy in Avena fatua . VIII. Action of malonic acid - Physiol. Plant, 72: 477–482.
A low concentration of malonic acid (50 m M ) induced germination in four genetically pure dormant lines of Avena fatua L. Sensitivity to this treatment was poor immediately after harvest but increased markedly during after-ripening, indicating that the mode of action of malonic acid (50 m M ) was similar to that of another organic acid, citric acid. Over the concentration range (10–50 m M ) where malonic acid promoted germination, oxygen uptake was also stimulated, and this was before the first visible signs of germination. At higher concentrations (100–300 m M ) where there was no promotion of germination, malonic acid strongly inhibited oxygen uptake. These results show that malonic acid has a dual effect on oxygen uptake and subsequent germination. Low concentrations (10–50 m M ) act by stimulating the Krebs cycle and germination through an acidification reaction like citric acid, and high concentrations (100–300 m M ) act by inhibiting germination through enzymatic restraint of the Krebs cycle.
The stimulation of both oxygen uptake and germination by three established germination promoters (sodium nitrate, citric acid and ethanol) was inhibited by a high concentration of malonic acid (200 m M ) but unaffected by a low concentration (50 m M ). These results show that oxygen uptake, and hence the activity of the Krebs cycle, are important processes involved in the dormancy breaking mechanism of these three promotors.  相似文献   
74.
The mouse is a valuable model organism for biomedical research. Here, we established a comprehensive spectral library and the data-independent acquisition–based quantitative proteome maps for 41 mouse organs, including some rarely reported organs such as the cornea, retina, and nine paired organs. The mouse spectral library contained 178,304 peptides from 12,320 proteins, including 1678 proteins not reported in previous mouse spectral libraries. Our data suggested that organs from the nervous system and immune system expressed the most distinct proteome compared with other organs. We also found characteristic protein expression of immune-privileged organs, which may help understanding possible immune rejection after organ transplantation. Each tissue type expressed characteristic high-abundance proteins related to its physiological functions. We also uncovered some tissue-specific proteins which have not been reported previously. The testis expressed highest number of tissue-specific proteins. By comparison of nine paired organs including kidneys, testes, and adrenal glands, we found left organs exhibited higher levels of antioxidant enzymes. We also observed expression asymmetry for proteins related to the apoptotic process, tumor suppression, and organ functions between the left and right sides. This study provides a comprehensive spectral library and a quantitative proteome resource for mouse studies.  相似文献   
75.
Apical sodium-dependent bile acid transporter (ASBT) catalyses uphill transport of bile acids using the electrochemical gradient of Na+ as the driving force. The crystal structures of two bacterial homologues ASBTNM and ASBTYf have previously been determined, with the former showing an inward-facing conformation, and the latter adopting an outward-facing conformation accomplished by the substitution of the critical Na+-binding residue glutamate-254 with an alanine residue. While the two crystal structures suggested an elevator-like movement to afford alternating access to the substrate binding site, the mechanistic role of Na+ and substrate in the conformational isomerization remains unclear. In this study, we utilized site-directed alkylation monitored by in-gel fluorescence (SDAF) to probe the solvent accessibility of the residues lining the substrate permeation pathway of ASBTNM under different Na+ and substrate conditions, and interpreted the conformational states inferred from the crystal structures. Unexpectedly, the crosslinking experiments demonstrated that ASBTNM is a monomer protein, unlike the other elevator-type transporters, usually forming a homodimer or a homotrimer. The conformational dynamics observed by the biochemical experiments were further validated using DEER measuring the distance between the spin-labelled pairs. Our results revealed that Na+ ions shift the conformational equilibrium of ASBTNM toward the inward-facing state thereby facilitating cytoplasmic uptake of substrate. The current findings provide a novel perspective on the conformational equilibrium of secondary active transporters.  相似文献   
76.
Macroautophagy is a bulk degradation mechanism in eukaryotic cells. Efficiency of an essential step of this process in yeast, Atg8 lipidation, relies on the presence of Atg16, a subunit of the Atg12–Atg5-Atg16 complex acting as the E3-like enzyme in the ubiquitination-like reaction. A current view on the functional structure of Atg16 in the yeast S. cerevisiae comes from the two crystal structures that reveal the Atg5-interacting α-helix linked via a flexible linker to another α-helix of Atg16, which then assembles into a homodimer. This view does not explain the results of previous in vitro studies revealing Atg16-dependent deformations of membranes and liposome-binding of the Atg12–Atg5 conjugate upon addition of Atg16. Here we show that Atg16 acts as both a homodimerizing and peripheral membrane-binding polypeptide. These two characteristics are imposed by the two distinct regions that are disordered in the nascent protein. Atg16 binds to membranes in vivo via the amphipathic α-helix (amino acid residues 113–131) that has a coiled-coil-like propensity and a strong hydrophobic face for insertion into the membrane. The other protein region (residues 64–99) possesses a coiled-coil propensity, but not amphipathicity, and is dispensable for membrane anchoring of Atg16. This region acts as a Leu-zipper essential for formation of the Atg16 homodimer. Mutagenic disruption in either of these two distinct domains renders Atg16 proteins that, in contrast to wild type, completely fail to rescue the autophagy-defective phenotype of atg16Δ cells. Together, the results of this study yield a model for the molecular mechanism of Atg16 function in macroautophagy.  相似文献   
77.
Abstract

Crown ether 4 as a receptor core for protonated primary amines such as amino acids has been synthesized and incorporated into oligodeoxynucleotides as dangling ends.  相似文献   
78.
《Free radical research》2013,47(1-3):3-10
The role of free radicals and active states of oxygen in human cancer is as yet unresolved. Various lines of evidence provide strong but inferential evidence that free radical reactions can be of crucial importance in certain carcinogenic mechanisms. A central point in considering free radical reactions in carcinogenesis is that human cancer is really a group of highly diverse diseases for which the initial causation and the progression to clinical disease occur through a wide variety of mechanisms. Furthermore, for many human cancers it appears that there are alternate pathways capable of tumor initiation and tumor progression. While for certain of these pathways free radical reactions appear necessary, it is unlikely that there are human cancers for which free radicals, or any other mechanism, are sufficient for the entire processbeginning with the genetic alteration leading to a somatic mutation and eventually resulting in clinically overt disease. It is crucial that we view free radical reactions as aong a panoply of mechanisms leading to human cancer, and consider research about the role of free radicals in cancer as opportunities to prevent the initiation or progression of human cancer.  相似文献   
79.
Propionic acid (PA) is an important building block chemical and finds a variety of applications in organic synthesis, food, feeding stuffs, perfume, paint and pharmaceutical industries. Presently, PA is mainly produced by petrochemical route. With the continuous increase in oil prices, public concern about environmental pollution, and the consumers’ desire for bio-based natural and green ingredients in foods and pharmaceuticals, PA production from propionibacteria has attracted considerable attention, and substantial progresses have been made on microbial PA production. However, production of PA by propionibacteria is facing challenges such as severe inhibition of end-products during cell growth and the formation of by-products (acetic acid and succinic acid). The integration of reverse metabolic engineering and systematic metabolic engineering provides an opportunity to significantly improve the acid tolerance of propionibacteria and reduce the formation of by-products, and makes it feasible to strengthen the commercial competition of biotechnological PA production from propionibacteria to be comparable to the petrochemical route.  相似文献   
80.
ABSTRACT:?

Paclitaxel is a widely used anti-cancer agent. Conjugates of paclitaxel with poly(glutamic acid) have shown great promise in preclinical trials, and clinical trials are now underway. Preclinical data suggest that more paclitaxel is preferentially delivered to tumor sites vs. nonconjugated paclitaxel. When poly(glutamic acid) is conjugated to other families of cancer drugs, similar improvements in effectiveness and reduced toxicity are observed. Optimization of poly(glutamic acid) for use in drug delivery applications is a key step in making this technology viable.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号